Chapter 4 Extra Credit Challange!
|
An art student wants to make a painting with a simple geometric pattern. She starts with a square. She divides this square into two congruent triangles. Then she divides each of these triangles into two smaller congruent triangles. She repeats the process seven more times. What does her pattern look like in the end?
1.
Show that the two triangles are congruent using the Hypotenuse-Leg Theorem.
2. Use your knowledge
of the Hypotenuse-Leg Theorem to divide each triangle
in the figure above into two smaller congruent triangles. Repeat the process
six more times.
3.
How do you know that the triangles at each step are congruent?
4.
How many triangles of the smallest size are shown?
5. How many triangles
are shown if they each contain 64 of the
smallest-sized unit?
6. How many triangles
are shown if they each contain nine of the
smallest-sized unit?
No comments:
Post a Comment